If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8X^2+6X-3=0
a = 8; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·8·(-3)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{33}}{2*8}=\frac{-6-2\sqrt{33}}{16} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{33}}{2*8}=\frac{-6+2\sqrt{33}}{16} $
| 2n-25=3(1-4n) | | (x/4)=-7 | | 6x-4(x+4)=8+5x | | -7(5x+2)=189 | | Z=-2a+2 | | 5(5x+1)=4(4x-4) | | 2x+4=10+7x-4x | | -4+4x+5x=50 | | 3x-15-4=-55 | | 10+30x=-80 | | 4x+6-2x=-4 | | 5+4x=1+5x | | 8=x/9+1 | | Z=4-2a | | 10x+20=-2(x+8) | | 8×5=m×4 | | 2r+6+4r=-6 | | -2(x+4)+14=13-3x | | (x4)/2+x2-3/2=0 | | -5(-9x-16)=-325 | | 2+p=3×2 | | 90=10y+22+7y | | -1+1-5n-2n=-8n-6n | | 7^2x-5=343^x | | 30xX=90 | | 5x+4-2x=3x+4 | | -11+11r(6r+4)=44+10r | | A-5+8=-3+3a-8a | | -11r+11(6r+4)=44 | | -r-11=r-1+2 | | 1-6a=7-5a | | -2x-54=-9x+65 |